
Overview of Post-Quantum Hash-Based
Signature Schemes

Nathan Manohar
IBM Research

Post-Quantum Signature Schemes

• Quantum computer break many existing signature schemes
• RSA, ECDSA, BLS, El Gamal, Rabin, etc.

• Factoring, discrete log, bilinear maps, etc.

• NIST ran a “not a competition” standardization process
• Recently (July 2022) announced 3 signatures schemes to standardize

• CRYSTALS-Dilithium, FALCON, SPHINCS+

PQ Hash-Based Signature Schemes

SPHINCS+LMS, XMSS

Stateful
Use for software/firmware signing

Digital Signatures

Sign
𝑚

Verify Accept/Reject

𝑚

𝑚
sk

𝑚

vk

Two Properties:

1. Correctness

2. Unforgeability

Setup vk sk

Public Secret

Digital Signatures (Stateful)

Sign
𝑚

Verify Accept/Reject

𝑚

𝑚
sk

𝑚

vk

Two Properties:

1. Correctness

2. Unforgeability

Setup vk sk

Public Secret

State

• Both very similar (focus on LMS)

• Take a one-time signature and transform to many-time signature
• One-time signature: Only ever sign one message with any key pair

• Use Winternitz one-time signature as building block

• 𝐻 is a cryptographic hash function
• Every application uses a different prefix!

LMS and XMSS Signature Schemes

Properties of 𝐻

• 𝐻 is “hard to invert” and output “looks random”

• 𝐻 is collision-resistant
• Cannot find 𝑥 ≠ 𝑥′with 𝐻 𝑥 = 𝐻(𝑥′)

• Can instantiate 𝐻 with SHA256

𝑥 𝐻(𝑥)
Easy

Hard

• Idea: Use hash chain to sign message

• Small message space: 𝑚, an integer in 0 – 15

• Sample uniformly random 𝑠𝑘 ← 0,1 256

• Verification key 𝑣𝑘 = 𝐻15(𝑠𝑘)

• Signature 𝜎 = 𝐻𝑚(𝑠𝑘)

Winternitz One-Time Signature Scheme

Winternitz One-Time Signature Scheme

𝑠𝑘 𝐻15(𝑠𝑘)𝐻(𝑠𝑘) 𝐻2(𝑠𝑘) 𝐻3(𝑠𝑘) 𝐻4(𝑠𝑘) …

vk

=

𝑚 = 3 3

=

This is insecure!

Winternitz One-Time Signature Scheme

𝑠𝑘1 𝐻15(𝑠𝑘1)𝐻(𝑠𝑘1) 𝐻2(𝑠𝑘1) 𝐻3(𝑠𝑘1) 𝐻4(𝑠𝑘1)
…

vk

=

𝑚 = 3 3 =

𝑠𝑘2 𝐻15(𝑠𝑘2)𝐻(𝑠𝑘2) 𝐻2(𝑠𝑘2) 𝐻3(𝑠𝑘2) 𝐻4(𝑠𝑘2)
…

sk

=

𝐻3(𝑠𝑘1) 𝐻12(𝑠𝑘2)

Winternitz One-Time Signature Scheme

• Extend to arbitrary length messages

𝐻 𝑚 = 3 9 11 6

Sign each block separately!

Signature length:
2 ∗ 𝑁𝑢𝑚𝐵𝑙𝑜𝑐𝑘𝑠 hashes

Winternitz One-Time Signature Scheme

• Extend to arbitrary length messages

𝐻 𝑚 = 3 9 11 6

• Create 𝐶ℎ𝑒𝑐𝑘𝑆𝑢𝑚 = σ𝑖=1
4 (15 − 𝑏𝑙𝑜𝑐𝑘𝑖)

12 + 6 + 4 + 9 = 31 = 1 15

Winternitz One-Time Signature Scheme

• Extend to arbitrary length messages

𝐻 𝑚 = 3 9 11 6 1 15𝐶ℎ𝑒𝑐𝑘𝑆𝑢𝑚 =

𝜎 = 𝐻3(𝑠𝑘1) 𝐻9(𝑠𝑘2) 𝐻11(𝑠𝑘3) 𝐻6(𝑠𝑘4) 𝐻(𝑠𝑘5) 𝐻15(𝑠𝑘6)

𝑠𝑘 = 𝑠𝑘1, 𝑠𝑘2, 𝑠𝑘3, 𝑠𝑘4, 𝑠𝑘5, 𝑠𝑘6

Let 𝑣𝑘𝑖 = 𝐻15 𝑠𝑘𝑖 .
𝑣𝑘 = 𝐻(𝑣𝑘1, 𝑣𝑘2, 𝑣𝑘3, 𝑣𝑘4, 𝑣𝑘5, 𝑣𝑘6)

• Winternitz can only sign one message!

• Extend to many messages

• To support 𝑁 signatures, instantiate one-time signature 𝑁 times
• Generate 𝑁 key pairs (𝑣𝑘𝑖 , 𝑠𝑘𝑖)

• Use 𝑠𝑘𝑖 to sign 𝑖th message

• Signer maintains counter state 𝑖

LMS Signature Scheme

Inefficient!

Merkle Tree

𝑟

𝑛0 𝑛1

𝑙0 𝑙1 𝑙2 𝑙3

𝑛0 = 𝐻(𝑙0, 𝑙1)

Store root

Merkle Tree

𝑟

𝑛0 𝑛1

𝑙0 𝑙1 𝑙2 𝑙3

Store 𝑟

Check 𝐻 𝑛0, 𝐻 𝑙2, 𝑙3 == 𝑟

Merkle Tree

𝑟

𝑛0 𝑛1

𝑙0 𝑙1 𝑙2 𝑙3

Form Merkle Tree of individual 𝑣𝑘𝑖’s
𝑙𝑖 = 𝐻(𝑣𝑘𝑖)
𝑣𝑘 = 𝑟

• Support 𝑁 = 2ℎ signatures

• 𝑁 instantiations of Winternitz one-time signature (𝑠𝑘𝑖 , 𝑣𝑘𝑖)

• 𝑣𝑘 is Merkle tree root of Merkle tree with leaves 𝐻 𝑣𝑘𝑖

• 𝑠𝑘 is (𝑠𝑘1, 𝑠𝑘2, … , 𝑠𝑘𝑁)

• Signer maintains counter state 𝑖

LMS Signature Scheme

• Signature for 𝑚: Consists of two parts
1. 𝜎𝑖 = 𝑆𝑖𝑔𝑛(𝑠𝑘𝑖 , 𝑚)

2. Merkle path for 𝑣𝑘𝑖: (𝑝0, 𝑝1, … , 𝑝ℎ)

• Verification:
1. Run Winternitz verification to get candidate 𝑣𝑘𝑖′

2. Use Merkle path with 𝑣𝑘𝑖′ to get candidate 𝑣𝑘′

3. Accept if 𝑣𝑘′ == 𝑣𝑘

LMS Signature Scheme

• Very similar

• Main difference is how 𝐻 is invoked

• LMS: 𝐻(𝑐𝑡𝑟,𝑚) where 𝑐𝑡𝑟 is a deterministic prefix

• XMSS: 𝐻(𝑐𝑡𝑟1, 𝑚 ⊕ 𝑐𝑡𝑟2) where 𝑐𝑡𝑟1and 𝑐𝑡𝑟2 are pseudorandom
• 𝑐𝑡𝑟𝑖 = 𝐻(𝑠𝑒𝑒𝑑, 𝑎𝑑𝑑𝑟)

LMS vs. XMSS

• Generating 𝑣𝑘 is inefficient for large 𝑁
• Need to compute 𝑁 − 1 hashes to construct Merkle tree

• Hierarchical extensions of LMS and XMSS
• HSS and XMSSMT, respectively

Extensions

𝑣𝑘

Extensions

𝑣𝑘𝑖

𝑣𝑘

𝑣𝑘′

𝑣𝑘𝑗
′

Sign 𝑣𝑘’ using 𝑠𝑘𝑖
Sign 𝑚 using 𝑠𝑘𝑗′

Can have 𝐿 levels of trees
Sig. size increases by factor of 𝐿

• Similar overall approach to LMS and XMSS

• Stateless
• Used for general applications

SPHINCS+

How can we remove the state?

SPHINCS+

𝑣𝑘

𝑣𝑘𝑖

Sample index 𝑖 to pick which 𝑠𝑘𝑖 to use to sign message randomly!
Need to never sample same index twice with overwhelming probability

Need too many key pairs 𝑣𝑘𝑖 , 𝑠𝑘𝑖
Merkle tree is too big!

SPHINCS+

Use many levels of trees

Need many levels of trees
Signature size is too long!

SPHINCS+

Use many levels of trees

Use few-time signature scheme for
bottom tree

Can pick the same leaf index to use a few times

Greatly reduces number of levels of trees!

128 bits post-quantum security with 12 trees each of
height 5

WOTS

WOTS

WOTS

HORST

• Recommendation Doc:
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-
208.pdf

• LMS: https://www.rfc-editor.org/rfc/rfc8554.html

• XMSS: https://datatracker.ietf.org/doc/html/rfc8391

• SPHINCS+: https://sphincs.org/

References

Thank You!

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-208.pdf
https://www.rfc-editor.org/rfc/rfc8554.html
https://datatracker.ietf.org/doc/html/rfc8391
https://sphincs.org/

