Overview of Post-Quantum Hash-Based Signature Schemes

Nathan Manohar IBM Research

Post-Quantum Signature Schemes

- Quantum computer break many existing signature schemes
 - RSA, ECDSA, BLS, El Gamal, Rabin, etc.
 - Factoring, discrete log, bilinear maps, etc.
- NIST ran a "not a competition" standardization process
 - Recently (July 2022) announced 3 signatures schemes to standardize
 - CRYSTALS-Dilithium, FALCON, SPHINCS+

PQ Hash-Based Signature Schemes

Stateful Use for software/firmware signing

SPHINCS+

Digital Signatures

Digital Signatures (Stateful)

LMS and XMSS Signature Schemes

- Both very similar (focus on LMS)
- Take a one-time signature and transform to many-time signature
 - One-time signature: Only ever sign one message with any key pair
- Use Winternitz one-time signature as building block
- *H* is a cryptographic hash function
 - Every application uses a different prefix!

Properties of H

- *H* is "hard to invert" and output "looks random"
- *H* is collision-resistant
 - Cannot find $x \neq x'$ with H(x) = H(x')
- Can instantiate *H* with SHA256

- Idea: Use hash chain to sign message
- Small message space: m, an integer in 0 15
- Sample uniformly random $sk \leftarrow \{0,1\}^{256}$
- Verification key $vk = H^{15}(sk)$
- Signature $\sigma = H^m(sk)$

This is insecure!

• Extend to arbitrary length messages

$$H(m) = \frac{3}{9} \frac{9}{11} \frac{6}{6}$$

Sign each block separately!

Signature length: 2 * NumBlocks hashes

• Extend to arbitrary length messages

$$H(m) = \frac{3}{9} \frac{9}{11} \frac{6}{6}$$

• Create CheckSum = $\sum_{i=1}^{4} (15 - block_i)$

$$12 + 6 + 4 + 9 = 31 = 1$$
 15

• Extend to arbitrary length messages

$$\sigma = \left(H^3(sk_1) \right) \left(H^9(sk_2) \right) \left(H^{11}(sk_3) \right) \left(H^6(sk_4) \right) \left(H(sk_5) \right) \left(H^{15}(sk_6) \right) \left($$

 $sk = sk_1, sk_2, sk_3, sk_4, sk_5, sk_6$

Let
$$vk_i = H^{15}(sk_i)$$
.
 $vk = H(vk_1, vk_2, vk_3, vk_4, vk_5, vk_6)$

LMS Signature Scheme

- Winternitz can only sign one message!
- Extend to many messages
- To support *N* signatures, instantiate one-time signature *N* times
 - Generate N key pairs (vk_i, sk_i)
 - Use sk_i to sign *i*th message
 - Signer maintains counter state *i*

Inefficient!

Merkle Tree

Merkle Tree

Merkle Tree

LMS Signature Scheme

- Support $N = 2^h$ signatures
- N instantiations of Winternitz one-time signature (sk_i, vk_i)
- vk is Merkle tree root of Merkle tree with leaves $H(vk_i)$
- sk is $(sk_1, sk_2, \dots, sk_N)$
- Signer maintains counter state *i*

LMS Signature Scheme

- Signature for *m*: Consists of two parts
 - 1. $\sigma_i = Sign(sk_i, m)$
 - 2. Merkle path for vk_i : (p_0, p_1, \dots, p_h)
- Verification:
 - 1. Run Winternitz verification to get candidate vk_i'
 - 2. Use Merkle path with vk_i' to get candidate vk'
 - 3. Accept if vk' == vk

- Very similar
- Main difference is how *H* is invoked
- LMS: *H*(*ctr*, *m*) where *ctr* is a deterministic prefix
- XMSS: $H(ctr_1, m \oplus ctr_2)$ where ctr_1 and ctr_2 are pseudorandom
 - $ctr_i = H(seed, addr)$

Extensions

- Generating *vk* is inefficient for large *N*
 - Need to compute N 1 hashes to construct Merkle tree
- Hierarchical extensions of LMS and XMSS
 - HSS and XMSS^{MT}, respectively

Extensions

vk vk_i Sign vk' using sk_i Sign *m* using sk_{j} Can have *L* levels of trees vk' Sig. size increases by factor of L vk'_i

- Similar overall approach to LMS and XMSS
- Stateless
 - Used for general applications

How can we remove the state?

Sample index i to pick which sk_i to use to sign message randomly! Need to never sample same index twice with overwhelming probability

> Need too many key pairs (vk_i, sk_i) Merkle tree is too big!

Use many levels of trees

Need many levels of trees Signature size is too long!

- Recommendation Doc: https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-208.pdf
- LMS: <u>https://www.rfc-editor.org/rfc/rfc8554.html</u>
- XMSS: <u>https://datatracker.ietf.org/doc/html/rfc8391</u>
- SPHINCS+: https://sphincs.org/

