

Toward High-Confidence System-Level Tamper Detection using Impedance Sensing

Tahoura Mosavirik, Patrick Schaumont, Fatemeh (Saba) Ganji, and Shahin Tajik,

Zero Trust Hardware Architectures Workshop (ZTHA), 3 November 2022

Supply chain security

Electronic device supply chain security

Motivation **7** IC Chip Foundry **IP** Design System Integrator ᆔ PCB Design PCB **Distribution & Packaging** Warehouse Deployment in the field PCB Foundry/Assembler

Worcester Polytechnic Institute

VERNAM LAB Worcester Polytechnic Institute

Existing verification methods

Impacts of threats on physical characteristics

VERNAM I AB Worcester Polytechnic Institute

	Counterfeit		
	Spy chips or HW Trojan on PCB	Components or Removing/adding components	Reliability Issues, Ageing, etc.
<text></text>	 PCB Visual patterns PCB Traces & vias PCB impedance PCB timing PCB power PCB temperature 	 PCB visual patterns Components' package PCB Traces & vias PCB impedance PCB freq. response IC side-channel 	 PCB Traces & vias PCB impedance PCB freq. response PCB power PCB temperature IC side-channel
serve as backdoors kill switches.	and and	leakages	

Worcester Polytechnic Institute

ᠳᡣᠠ

Verification approaches

Protection vs. detection approaches

Protection vs. detection solutions

VERNAM LAB

Available Inspection Tools

VERNAM LAB

- Detectable Features:
- PCB Visual layout
- PCB Traces & vias (top & bottom layers)
- PCB visual artifacts
- Components' package

- PCB layout (all layers)
- PCB Traces & vias (all layers)

- PCB/IC thermal emissions
- PCB/IC timing
- Short/open circuits

Electrical Analysis

- PCB/IC impedance
- PCB/IC timing
- PCB/IC power consumption

- PCB/IC impedance
- PCB/IC timing
- PCB/IC EM emissions

Electronic device supply chain security

Goal

Generating hardware signatures to differentiate between Genuine and counterfeit boards by monitoring the <u>physical behavior</u> of the system.

Worcester Polytechnic Institute

VERNAM L. Worcester Polytechnic Institute

↔ We assume that the adversary can physically tamper with all components of the PCB prior to the verification.

- For different verification scenarios, we assume that the verifier possesses a golden sample to compare the measurements.
- The goal is that before deploying the PCB in the field, the designer or the end user verifies the authenticity of the devices.

Verification methodology

Converting the unique properties in the **power distribution network** (PDN) of a PCB into physical signatures.

Power distribution network (PDN)

- 1) Stimulate the device under test (DUT).
- 2) Measure the electrical 'echo' of the system to the applied stimulus.
- 3) Compare the resultant electrical 'echoes' of the counterfeit and genuine samples.

[1] T. Mosavirik, F. Ganji, P. Schaumont, and S. Tajik, "Scatterverif: Verification of electronic boards using reflection response of power distribution network", ACM Journal on Emerging Technologies in Computing Systems, 18(4):1–24, 2022.

Case studies and results (inter-genuine signatures)

Backside of 2 different groups of MSP430FR2476 development kits

[1] T. Mosavirik, F. Ganji, P. Schaumont, and S. Tajik, "Scatterverif: Verification of electronic boards
 using reflection response of power distribution network", ACM Journal on Emerging Technologies in Computing Systems, 18(4):1–24, 2022.

Worcester Polytechnic Institute

Case studies and results (inter-genuine signatures)

Manufacturing process variation

Backside of 2 different groups of MSP430FR2476 development kits

[1] T. Mosavirik, F. Ganji, P. Schaumont, and S. Tajik, "Scatterverif: Verification of electronic boards
 using reflection response of power distribution network", ACM Journal on Emerging Technologies in Computing Systems, 18(4):1–24, 2022.

Case studies and results (tampering on MSP boards)

[1] T. Mosavirik, F. Ganji, P. Schaumont, and S. Tajik, "Scatterverif: Verification of electronic boards using reflection response of power distribution network", ACM Journal on Emerging Technologies in Computing Systems, 18(4):1–24, 2022.

Worcester Polytechnic Institute

VERNAM LAB

Case studies and results (tampering on MSP boards)

[1] T. Mosavirik, F. Ganji, P. Schaumont, and S. Tajik, "Scatterverif: Verification of electronic boards
 using reflection response of power distribution network", ACM Journal on Emerging Technologies in Computing Systems, 18(4):1–24, 2022.

Worcester Polytechnic Institute

Case studies and results (pressure sensors)

DUTs: a counterfeit (left) and genuine (right) pressure sensors

[1] T. Mosavirik, F. Ganji, P. Schaumont, and S. Tajik, "Scatterverif: Verification of electronic boards
 using reflection response of power distribution network", ACM Journal on Emerging Technologies in Computing Systems, 18(4):1–24, 2022.

Second solution

- we assume that the victim's electronic board is operated in an untrusted field and the attacker has physical access to it.
- * The goal is to detect the attacker's tampering attempt on the system before she can mount SCA or FI attacks.
- We assume that the adversary can physically tamper with all components on the core and I/O PDNs of the board connected to the victim chip, including adding/removing/replacing other components.
- ✤ The proposed sensing countermeasure works on powered-on systems.
- We assume that the PDN's impedance profiles of genuine samples have been collected in an enrollment phase in a trusted environment and stored on the same chip, which performs the impedance characterization.

ImpedanceVerif^[2]

On-chip impedance sensing

[2] T. Mosavirik, P. Schaumont, and S. Tajik, "ImpedanceVerif: On-Chip Impedance Sensing for

23 System-Level Tampering Detection", IACR Transactions on Cryptographic Hardware and Embedded Systems (TCHES 2023).

An embedded VNA on FPGA

Cosmin Iorga, "Solve Power Integrity Problems in FPGA Systems Using an Embedded Vector 24 Network Analyzer", Signal Integrity Journal, 2018.

An embedded VNA on FPGA

Cosmin Iorga, "Solve Power Integrity Problems in FPGA Systems Using an Embedded Vector 25 Network Analyzer", Signal Integrity Journal, 2018.

An embedded VNA on FPGA

[2] T. Mosavirik, P. Schaumont, and S. Tajik, "ImpedanceVerif: On-Chip Impedance Sensing for

26 System-Level Tampering Detection", IACR Transactions on Cryptographic Hardware and Embedded Worcester Polytechnic Institute Systems (TCHES 2023).

Device under test

Backside

[2] T. Mosavirik, P. Schaumont, and S. Tajik, "ImpedanceVerif: On-Chip Impedance Sensing for

27 System-Level Tampering Detection", IACR Transactions on Cryptographic Hardware and Embedded Systems (TCHES 2023).

Results for intra-genuine PCBs

[2] T. Mosavirik, P. Schaumont, and S. Tajik, "ImpedanceVerif: On-Chip Impedance Sensing for
 System-Level Tampering Detection", IACR Transactions on Cryptographic Hardware and Embedded Systems (TCHES 2023).

Worcester Polytechnic Institute

28

Results for adding a shunt resistor

[2] T. Mosavirik, P. Schaumont, and S. Tajik, "ImpedanceVerif: On-Chip Impedance Sensing for System-Level Tampering Detection", IACR Transactions on Cryptographic Hardware and Embedded 29 Systems (TCHES 2023).

Results for removing 470 nF capacitors

f=1.57 kHz

[2] T. Mosavirik, P. Schaumont, and S. Tajik, "ImpedanceVerif: On-Chip Impedance Sensing for

30 System-Level Tampering Detection", IACR Transactions on Cryptographic Hardware and Embedded Systems (TCHES 2023).

Results for removing 47 nF capacitors

f= 39.90 MHz

VERNAM L Worcester Polytechnic Institut

[2] T. Mosavirik, P. Schaumont, and S. Tajik, "ImpedanceVerif: On-Chip Impedance Sensing for

31 System-Level Tampering Detection", IACR Transactions on Cryptographic Hardware and Embedded Systems (TCHES 2023).

Proximity of an EM Probe

[2] T. Mosavirik, P. Schaumont, and S. Tajik, "ImpedanceVerif: On-Chip Impedance Sensing for

32 System-Level Tampering Detection", IACR Transactions on Cryptographic Hardware and Embedded Systems (TCHES 2023).

IC Package Polishing

530 -Package polished (dark room experiment) Package polished 520 11 -Genuine -Genuine 11 520 500 1.1 480 $\begin{array}{c}
 480 \\
 460 \\
 \frac{1}{2} \\
 \frac{1}{2} \\
 420 \\
 2 \\
 420$ 510 $(m\Omega)$ PDN 15 **N** N 18 OC.OK 400 480 380 470 10^{5} 10^{7} 10^{3} 10^{4} 10^{6} 10^{8} 4.5 5.5 10^{2} 3.5 5 Frequency (Hz) Frequency (Hz) $\times 10^{8}$ Polished FPGA package

[2] T. Mosavirik, P. Schaumont, and S. Tajik, "ImpedanceVerif: On-Chip Impedance Sensing for

33 System-Level Tampering Detection", IACR Transactions on Cryptographic Hardware and Embedded Systems (TCHES 2023).

Worcester Polytechnic Institute

VERNAM LAB

Wasserstein metric

[2] T. Mosavirik, P. Schaumont, and S. Tajik, "ImpedanceVerif: On-Chip Impedance Sensing for

System-Level Tampering Detection", IACR Transactions on Cryptographic Hardware and Embedded 34 Systems (TCHES 2023).

- ◆ Our solutions make the verification generic and applicable to virtually all electronic systems.
- We converted the unique properties in the **power distribution network** (PDN) of a PCB into physical signatures.
- ✤ We used these hardware signatures, we can characterize the entire system from board to chip level, in different portions of the frequency band.
- The first solution, "ScatterVerif," is a holistic PCB verification framework based on the characterization of the PCBs' PDN. We show that different classes of physical attacks affect the overall impedance of a PCB differently in various frequency ranges. Hence, the reflection response of the PCB provides a unique hardware signature to differentiate between genuine and counterfeit/tampered samples by a single measurement.
- Experimental results from "ScatterVerif" show that even genuine samples, manufactured at different facilities, can be identified using the proposed approach.
- The on-chip impedance sensing (ImpedanceVerif) reveals different classes of tamper events from board to chip level, even environment-level tampering activities, such as the proximity of contactless EM probes to the IC package or slightly polished IC package.
- Self-contained verification method

36

Acknowledgement

- Dr. Shahin Tajik
- Dr. Patrick Schaumont
- Dr. Fatemeh (Saba) Ganji

Thank you for your attention!

Electrical echo

Scattering parameters measurement